
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Course Prerequisite Planning Using DFS-Based

Topological Sorting

Bryan Ho - 13523029

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: bryanho67@gmail.com , 13523029@std.stei.itb.ac.id

Abstract—Effective academic planning is crucial for students

to complete their studies efficiently, particularly in programs

with structured course dependencies like Informatics

Engineering at Institut Teknologi Bandung. Many courses have

prerequisites that form a directed acyclic graph (DAG), where

each node represents a course and each edge represents a

prerequisite relationship. This paper presents a systematic

approach to course scheduling using topological sorting based on

Depth-First Search (DFS). By representing course dependencies

as a graph and applying DFS-based topological sorting, an

optimal order in which students can take courses while satisfying

all prerequisite constraints is generated. The proposed method

not only ensures prerequisite fulfillment but also helps identify

potential bottlenecks and critical paths in the curriculum

structure. A case study on the Informatics Engineering

curriculum at ITB demonstrates the practicality and

effectiveness of this approach in assisting students and academic

advisors in course planning and progression tracking.

Keywords—Course Scheduling, Depth-First Search, Directed

Acyclic Graph, Topological Sorting

I. INTRODUCTION

Academic planning plays a vital role in ensuring timely
graduation and efficient course progression, especially in
structured undergraduate programs such as Informatics
Engineering at Institut Teknologi Bandung (ITB). In such
programs, many courses are interdependent, requiring students
to complete certain prerequisites before taking advanced
subjects. This creates a complex web of course relationships
that must be carefully considered when building a semester-by-
semester academic plan.

Manually navigating these prerequisites can be challenging
for students and academic advisors alike, particularly when the
curriculum spans multiple years and includes strict prerequisite
chains. Poor planning may lead to delays in graduation due to
missed prerequisite fulfillment or inefficient course selection.

These prerequisite relationships can be naturally modeled
as a directed acyclic graph (DAG), where each node represents
a course and each edge indicates a prerequisite requirement. In
computer science, topological sorting is a technique that
produces a linear ordering of nodes in a DAG such that for
every directed edge from node A to node B, A comes before B

in the ordering. This concept can be applied to curriculum
planning by identifying a valid sequence in which students can
complete their courses without violating any prerequisite
constraints.

This paper explores the application of Depth-First Search
(DFS)-based topological sorting to determine valid course
sequences within the Informatics Engineering curriculum at
ITB. By constructing a course dependency graph and applying
the DFS algorithm, this approach helps reveal the critical paths
and potential bottlenecks in the curriculum. The result is a tool
that aids both students and academic advisors in making more
informed and strategic decisions regarding course planning and
registration.

II. THORETICAL BASIS

A. Graph

A graph 𝐺 is a mathematical structure used to represent a
set of discrete objects and the connections between them.
Formally, graph is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where
𝑉 is a finite set of vertices (or nodes) and 𝐸 is a finite set of
edges. In the context of this study, each vertex represents a
distinct course in the curriculum, while each edge denotes a
dependency or prerequisite relationship between courses.

 Graphs can be classified based on the directionality of their
edges:

1. Undirected Graph
An edge has no direction, indicating a mutual or
symmetric relationship between two vertices.

2. Directed Graph
Each edge has a direction, from vertex 𝑢 to vertex 𝑣
denoted as (𝑢, 𝑣). In this study, a directed edge (𝑢, 𝑣)
implies that course 𝑢 is a prerequisite for course 𝑣.

mailto:bryanho67@gmail.com
mailto:13523029@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 2.1 (G1) undirected graph, (G2) directed graph

Source:.https://informatika.stei.itb.ac.id/~rinaldi.munir/Mat

dis/2024-2025/20-Graf-Bagian1-2024.pdf

 Several key terms from graph theory are used throughout
this paper:

1. Adjacent Vertices
Two vertices are adjacent if there is a direct edge
between them.

2. Path
A sequence of vertices where each consecutive pair is
connected by an edge.

3. Cycle
A path that begins and ends at the same vertex, with
all intermediate vertices distinct.

4. Connected Vertices
Two vertices are connected if there exists a path
between them. In directed graphs, this may refer to
reachability in a specific direction.

A graph is said to be acyclic if it contains no cycles. When
a directed graph is acyclic, it is called a Directed Acyclic
Graph (DAG). DAGs are essential for modeling systems with
one-way dependencies and no circular references, ensuring that
no course indirectly depends on itself. This makes DAGs
particularly suitable for representing course prerequisite
structures.

Figure 2.2 Directed acyclic graph (DAG)
Source: https://www.geeksforgeeks.org/dsa/topological-

sorting/

B. Topological Sorting

Topological sorting is defined as a linear ordering of
vertices in a Directed Acyclic Graph (DAG) such that for every
directed edge (u, v), vertex u appears before vertex v in the
ordering. This technique is fundamental for sequencing tasks or

events with dependencies, making it directly applicable to
course prerequisite planning. In the context of curriculum
design, a topological sort produces a sequence of courses in
which all prerequisite constraints are satisfied. If course u is a
prerequisite for course v, then u will necessarily appear earlier
than v in the resulting order.

It is important to note that topological sorting is only
applicable to DAGs. This constraint arises for two primary
reasons:

1. Undirected Edges
Graphs with undirected edges imply mutual
dependency between connected vertices. For instance,
an undirected edge between u and v suggests that u
depends on v and v depends on u. Such bidirectional
dependency contradicts the requirement of a linear
ordering, as neither node can be definitively placed
before the other without violating the dependency
rule.

2. Cycles
The presence of a cycle in a directed graph, such as u
→ v → w → u, also prevents topological sorting.
Cycles represent circular dependencies where every
vertex is indirectly dependent on itself, making it
impossible to identify a valid starting point. Any
attempt to sort such a graph would violate the
prerequisite condition, as no vertex in the cycle can
come before all others it depends on.

Another significant characteristic of topological sorting is
that the resulting order may not be unique. A given DAG may
have multiple valid topological orderings depending on the
structure of its dependencies. This reflects real-world
flexibility, where several different but valid sequences may
satisfy all constraints.

For example, consider a graph with vertices V = {0, 1, 2, 3,
4, 5} and edges E = {(2,3), (3,1), (4,0), (4,1), (5,0), (5,2)} as
shown in Figure 2.2. Both of the following are valid
topological orderings:

• 5 → 4 → 2 → 3 → 1 → 0

• 4 → 5 → 2 → 3 → 1 → 0

Each ordering respects the prerequisite relationships in the
graph, even though the paths to the final outcome differ. This
non-uniqueness underscores the versatility of topological
sorting within constrained systems like academic course
planning.

C. Depth-First Search (DFS)

Depth-First Search (DFS) is one of the fundamental graph
traversal algorithms used to systematically explore the vertices
and edges of a graph. The core principle of DFS is to start at a
selected vertex and explore as far as possible along each branch
before backtracking. This approach makes DFS particularly
useful in applications that require exhaustive traversal, such as
cycle detection, pathfinding, and most notably, topological
sorting on Directed Acyclic Graphs (DAGs).

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://www.geeksforgeeks.org/dsa/topological-sorting/
https://www.geeksforgeeks.org/dsa/topological-sorting/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

The basic steps of a DFS traversal from a given starting
vertex 𝑣 are as follows:

1. Visit vertex 𝑣.

2. Recursively visit each unvisited neighbor 𝑤 of 𝑣.

3. If a vertex 𝑢 is reached such that all its neighbors have
already been visited, the algorithm backtracks to the
previous vertex that still has unvisited neighbors.

4. This process continues until all reachable vertices from
the starting vertex have been visited.

5. The search is complete when there are no more
unvisited vertices that can be reached from any
previously visited node.

DFS is commonly implemented using recursion or an
explicit stack, which naturally maintains the traversal order and
facilitates backtracking.

D. Topological Sorting using DFS

One of the most widely used methods to perform
topological sorting is by leveraging Depth-First Search (DFS).
In this approach, the graph is traversed recursively, exploring
each vertex and its dependencies before recording it in the final
order. A crucial component in this algorithm is the use of a
stack as an auxiliary data structure to ensure that nodes are
added in post-order, that is, a node is pushed onto the stack
only after all of its adjacent (dependent) nodes have been fully
visited.

The general algorithm for topological sorting using DFS is
as follows:

1. Construct a directed acyclic graph (DAG) with 𝑛
vertices and directed edges representing prerequisite
relationships.

2. Initialize a visited array (or set) to keep track of visited
nodes and an empty stack to store the topological
order.

3. For each unvisited vertex in the graph, call a DFS
function starting from that vertex and mark the current
node as visited.

4. Recursively perform DFS on all unvisited neighbors
(nodes that directly depend on the current node).

5. Once all neighbors are visited, push the current node
onto the stack.

6. After all vertices have been visited, pop elements from
the stack one by one to generate the topologically
sorted order.

This method guarantees that each course is placed after all
of its prerequisites in the final sequence. Because nodes are
pushed only after their dependent nodes have been processed,
the stack naturally captures the reverse of the desired ordering.
Popping from the stack yields a valid course progression path
that satisfies all prerequisite constraints.

III. IMPLEMENTATION

A. Research Limitation

On writing this paper, the author limits the implementation
to a case study involving a single course from the Informatics
Engineering undergraduate curriculum at Institut Teknologi
Bandung. This simplification is intended to clearly demonstrate
the application of DFS-based topological sorting in course
prerequisite planning. The limitations of this study are:

1. The dataset is based solely on the official 2019
Informatics Engineering curriculum.

2. Only one target course is used as the endpoint in the
prerequisite dependency chain.

3. The analysis includes only the direct and indirect
prerequisite courses that lead to this target course.

4. Prerequisite relationships are assumed to form a
directed acyclic graph (DAG) with no cycles.

5. Semester information, such as course availability in
specific semesters, is not considered.

B. Research Site

This study uses the undergraduate 2019 Informatics
Engineering curriculum from Institut Teknologi Bandung as its
research site. The course selected as the endpoint for
prerequisite planning is IF4073 – Image Interpretation and
Processing, a higher-level subject typically taken in the last
year of the program. This course serves as the target node in
the prerequisite dependency chain used to demonstrate the
proposed method.

The implementation focuses on all direct and indirect
prerequisite courses that must be completed before enrolling in
IF4073 – Image Interpretation and Processing, as outlined in
the official academic guide. The prerequisite structure is as
follows:

IF4073 – Image Interpretation and Processing

• IF3270 – Machine Learning

o IF3170 – Artificial Intelligence

❖ IF2121 – Computational Logic

❖ IF2124 – Formal Language Theory and
Automata

➢ IF2120 – Discrete Mathematics

➢ IF2110 – Algorithm and Data
Structure

❖ IF2220 – Probability and Statistics

➢ MA1101 – Mathematics IA

➢ MA1201 – Mathematics IIA

➢ IF2120 – Discrete Mathematics

❖ IF2211 – Algorithm Strategies

o IF2110 – Algorithm and Data Structure

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

• IF3260 – Computer Graphics

o IF2130 – Computer Organization and
Architecture

o IF2110 – Algorithm and Data Structure

o IF2123 – Geometric and Linear Algebra

❖ MA1101 – Mathematics IA

 This hierarchical dependency is modeled as a directed
acyclic graph (DAG), where each course is represented as a
node, and each prerequisite relationship is represented by a
directed edge. The complete prerequisite structure for the
IF4073 – Image Interpretation and Processing course, serving
as the case study for this paper, is illustrated in Figure 3.1.

Figure 3.1 IF4073 – Image Interpretation and Processing

course prerequisite directed acyclic graph (DAG)

Note that each course node in Figure 3.1 is labeled with a

number, which corresponds to the course name as detailed in

Table 3.1.

Table 3.1 Course node number mapping for IF4073 – Image

Interpretation and Processing course prerequisite

Number

Course

Code Course Name

0 MA1101 Mathematics IA

1 IF2120 Discrete Mathematics

2 MA1201 Mathematics IIA

3 IF2110 Algorithm and Data Structure

4 IF2121 Computational Logic

5 IF2124 Formal Language Theory and Automata

6 IF2220 Probability and Statistics

7 IF2211 Algorithm Strategies

8 IF3170 Artificial Intelligence

9 IF2130 Computer Organization and Architecture

10 IF2123 Geometric and Linear Algebra

11 IF3270 Machine Learning

12 IF3260 Computer Graphics

13 IF4073 Image Interpretation and Processing

C. Implementation of DFS-Based Topological Sorting for the

IF4073 – Image Interpretation and Processing Course

Prerequisites

With the course prerequisite structure now represented as a
directed acyclic graph (DAG), as shown in Figure 3.1, the next
step is to determine a valid sequence of courses that satisfies all
prerequisite constraints. The core of this implementation relies
on a Depth-First Search (DFS) traversal modified to produce a
topological ordering. The algorithm systematically explores
each node (course) and its unvisited dependencies, ensuring
that all prerequisites are fully processed before a course is
added to the final sequence.

To achieve this, a stack is used as an auxiliary data
structure. A stack plays a crucial role in maintaining this order.
During the DFS traversal, courses are pushed onto this stack
only after all of their dependent courses (courses for which the
current node is a prerequisite) have been fully visited and
processed. This ensures that foundational courses, which have
fewer or no unmet prerequisites, are placed closer to the top of
the stack. As a result, when elements are popped from the
stack, they directly yield a valid topological order for course
progression.

To demonstrate the algorithm (as detailed in Section II.D,
"Topological Sorting using DFS," of the Theoretical Basis),
DFS-based topological sorting is applied to the prerequisites of
IF4073 – Image Interpretation and Processing. The
implementation of this approach is as follows:

Iteration 0:
Initialize an array or set that marks all nodes (courses) as
unvisited initially to track nodes and an empty stack to store the
course in topological order.

Visited[] =

0 1 2 3 4 5 6

F F F F F F F

7 8 9 10 11 12 13

F F F F F F F

Stack[] =

top

 bottom

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Iteration 1:
Start DFS from an unvisited node, such as node 0, and mark it
as visited.

Visited[] =

0 1 2 3 4 5 6

T F F F F F F

7 8 9 10 11 12 13

F F F F F F F

Stack[] =

top

 bottom

Iteration 2:
Among the unvisited neighbors node 6 and node 10 of node 0,
perform DFS on node 6 and mark it as visited.

Visited[] =

0 1 2 3 4 5 6

T F F F F F T

7 8 9 10 11 12 13

F F F F F F F

Stack[] =

top

 bottom

Iteration 3:
Since node 8 is an unvisited neighbor of node 6, perform DFS
on node 8 and mark it as visited.

Visited[] =

0 1 2 3 4 5 6

T F F F F F T

7 8 9 10 11 12 13

F T F F F F F

Stack[] =

top

 bottom

Iteration 4:
Since node 11 is an unvisited neighbor of node 8, perform DFS
on node 11 and mark it as visited.

Visited[] =

0 1 2 3 4 5 6

T F F F F F T

7 8 9 10 11 12 13

F T F F T F F

Stack[] =

top

 bottom

Iteration 5:
Since node 13 is an unvisited neighbor of node 11, perform
DFS on node 13 and mark it as visited.

Node 13 has no unvisited neighbors, so push it onto the stack.
Backtrack and continue pushing nodes onto the stack once all
their neighbors are processed.

Visited[] =

0 1 2 3 4 5 6

T F F F F F T

7 8 9 10 11 12 13

F T F F T F T

Stack[] =

top

6 8 11 13

 bottom

Iteration 6:
After completing the DFS traversal from node 6 and pushing it
onto the stack, return to node 0 and continue DFS on its next
unvisited neighbor, node 10. Mark it as visited.

Visited[] =

0 1 2 3 4 5 6

T F F F F F T

7 8 9 10 11 12 13

F T F T T F T

Stack[] =

top

6 8 11 13

 bottom

Iteration 7:
Since node 12 is an unvisited neighbor of node 10, perform
DFS on node 12 and mark it as visited.

Node 12 has no unvisited neighbors, so push it onto the stack.
Backtrack and continue pushing nodes onto the stack once all
their neighbors are processed.

Since node 0 has no unvisited neighbors left, push it onto the

stack.

Visited[] =

0 1 2 3 4 5 6

T F F F F F T

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

7 8 9 10 11 12 13

F T F T T T T

Stack[] =

top

0 10 12 6 8 11 13

 bottom

Iteration 8:
Select an unvisited node, such as node 1, and perform DFS
from it. Mark node 1 as visited.

Visited[] =

0 1 2 3 4 5 6

T T F F F F T

7 8 9 10 11 12 13

F T F T T T T

Stack[] =

top

0 10 12 6 8 11 13

 bottom

Iteration 9:
Since node 5 is an unvisited neighbor of node 1, perform DFS
on node 5 and mark it as visited.

Node 5 has no unvisited neighbors, so push it onto the stack.
Backtrack and continue pushing nodes onto the stack once all
their neighbors are processed.

Since node 1 has no unvisited neighbors left, push it onto the
stack.

Visited[] =

0 1 2 3 4 5 6

T T F F F T T

7 8 9 10 11 12 13

F T F T T T T

Stack[] =

top

1 5 0 10 12 6 8

 bottom

11 13

Iteration 10:
Select an unvisited node, such as node 2, and perform DFS
from it. Mark node 2 as visited.

Node 2 has no unvisited neighbors, so push it onto the stack.

Visited[] =

0 1 2 3 4 5 6

T T T F F T T

7 8 9 10 11 12 13

F T F T T T T

Stack[] =

top

2 1 5 0 10 12 6

 bottom

8 11 13

Iteration 11:
Select an unvisited node, such as node 3, and perform DFS
from it. Mark node 3 as visited.

Node 3 has no unvisited neighbors, so push it onto the stack.

Visited[] =

0 1 2 3 4 5 6

T T T T F T T

7 8 9 10 11 12 13

F T F T T T T

Stack[] =

top

3 2 1 5 0 10 12

 bottom

6 8 11 13

Iteration 12:
Select an unvisited node, such as node 4, and perform DFS
from it. Mark node 4 as visited.

Node 4 has no unvisited neighbors, so push it onto the stack.

Visited[] =

0 1 2 3 4 5 6

T T T T T T T

7 8 9 10 11 12 13

F T F T T T T

Stack[] =

top

4 3 2 1 5 0 10

 bottom

12 6 8 11 13

Iteration 13:
Select an unvisited node, such as node 7, and perform DFS
from it. Mark node 7 as visited.

Node 7 has no unvisited neighbors, so push it onto the stack.

Visited[] =

0 1 2 3 4 5 6

T T T T T T T

7 8 9 10 11 12 13

T T F T T T T

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Stack[] =

top

7 4 3 2 1 5 0

 bottom

10 12 6 8 11 13

Iteration 14:
Select an unvisited node, such as node 9, and perform DFS
from it. Mark node 9 as visited.

Node 9 has no unvisited neighbors, so push it onto the stack.

Visited[] =

0 1 2 3 4 5 6

T T T T T T T

7 8 9 10 11 12 13

T T T T T T T

Stack[] =

top

9 7 4 3 2 1 5

 bottom

0 10 12 6 8 11 13

All nodes have been marked as visited. The DFS traversal is
complete, and the stack now contains the nodes in reverse
topological order.

IV. RESULT

After completing the DFS traversal, the stack contains the
courses in topological order. To obtain the correct sequence for
course planning, the elements are popped from the stack one by
one. This produces a valid topological order in which each
course appears only after all of its prerequisites have been
scheduled.

 By applying this DFS-based topological sorting algorithm
to the course prerequisite graph for IF4073 – Image
Interpretation and Processing, the resulting topological order
obtained by popping the stack is as follows:

9 → 7 → 4 → 3 → 2 → 1 → 5 → 0 → 10 → 12 → 6 → 8 →
11 → 13

 Translating these numerical labels back to their respective
course codes and names (refer to Table 3.1 for mapping), this
sequence represents one of the possible valid progression paths
for students aiming to complete IF4073:

IF2130 (Computer Organization and Architecture) → IF2211
(Algorithm Strategies) → IF2121 (Computational Logic) →
IF2110 (Algorithm and Data Structure) → MA1201
(Mathematics IIA) → IF2120 (Discrete Mathematics) →
IF2124 (Formal Language Theory and Automata) → MA1101
(Mathematics IA) → IF2123 (Geometric and Linear Algebra)
→ IF3260 (Computer Graphics) → IF2220 (Probability and
Statistics) → IF3170 (Artificial Intelligence) → IF3270
(Machine Learning) → IF4073 (Image Interpretation and
Processing)

V. CONCLUSION

Effective academic progression is a critical aspect of higher
education, especially within structured curricula such as the
Informatics Engineering program at Institut Teknologi
Bandung (ITB). By modeling course dependencies as a
directed acyclic graph (DAG) and applying a depth-first search
(DFS)-based topological sorting algorithm, this approach
successfully generates a valid course sequence that satisfies all
prerequisite constraints.

Topological sorting ensures that each course is scheduled
only after all of its prerequisites have been completed, making
it highly suitable for resolving curriculum planning challenges.
This method not only maintains prerequisite integrity but also
helps uncover the hierarchical structure of course
dependencies. As a result, students can follow a clear and
feasible progression path, while academic advisors gain a
practical tool to support data-driven course planning.

As curriculum requirements grow increasingly complex,
graph-based techniques such as DFS-based topological sorting
offer a robust foundation for the development of intelligent and
personalized academic planning systems.

VI. APPENDIX

Video explanation of this paper: https://youtu.be/ZAe_lYKwx8Y

VII. ACKNOWLEDGMENT

This paper was completed by the grace, guidance, and

protection of God which enabled the author to finish it on

time. The author would like to extend heartfelt gratitude to all

parties who supported the study and learning process in

IF2211 Algorithm Strategies course, especially to Dr. Nur

Ulfa Maulidevi, S.T, M.Sc., Dr. Ir. Rinaldi Munir, M.T., and

Monterico Adrian, M.T. as the course lecturers for their

invaluable guidance. Lastly, the author apologizes for any

shortcomings that may remain in this paper. It is sincerely

hoped that this paper can serve as a useful reference for future

studies or research purposes.

REFERENCES

[1] Munir, Rinaldi. 2024. “Graf (Bagian 1)”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-

Graf-Bagian1-2024.pdf

(accessed on 21 June 2025).
[2] Munir, R., & Maulidevi, N. U. 2025. “Breadth First Search (BFS) dan

Depth First Search (DFS) - Bagian 1”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-
BFS-DFS-(2025)-Bagian1.pdf

(accessed on 21 June 2025).

[3] GeeksforGeeks. 2023. “Introduction to Directed Acyclic Graph”.
https://www.geeksforgeeks.org/dsa/introduction-to-directed-acyclic-

graph/

(accessed on 22 June 2025).
[4] GeeksforGeeks. 2025. “Topological Sorting”.

https://www.geeksforgeeks.org/dsa/topological-sorting/
(accessed on 22 June 2025).

[5] https://youtu.be/n_yl2a6n7nM?si=VW-PbbikntCePlJw

(accessed on 22 June 2025).

https://youtu.be/ZAe_lYKwx8Y
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf
https://www.geeksforgeeks.org/dsa/introduction-to-directed-acyclic-graph/
https://www.geeksforgeeks.org/dsa/introduction-to-directed-acyclic-graph/
https://www.geeksforgeeks.org/dsa/topological-sorting/
https://youtu.be/n_yl2a6n7nM?si=VW-PbbikntCePlJw

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 22 Juni 2025

Bryan Ho (13523029)

